
中國現代空間結構的發展受到了西方國家先進技術的影響。近幾年來,在 膜結構應用上顯示了活躍的趨勢。雖然一開始工程規模不大,但已逐漸擴展到更大的面積和跨度。所采用的技術與材料在某種程度上還要依靠國外,但預計會有更多的工程依靠自己的力量來完成。在過去十年中,中國的許多城市都在籌劃建設新的體育設施。由于其重量很輕的優點, 膜結構往往被采用。體育建筑可以說是 膜結構在中國應用的突破口。1997年之前,只建造了少量的小型與中型的 膜結構,同年在上海舉行的第七屆全國運動會, 膜結構被用在主體育場的看臺挑篷,總面積達36100m2.這是中國第一次將膜材制成的屋頂用在大面積的永久性建筑上,具有深遠的影響。當時涂PTFE的玻璃纖維膜材和工程安裝還借助于國外的力量。在上海體育場成功的建成后,雖然它的價格仍高于傳統的結構,又出現了一些膜結構屋頂的體育場。頤中體育場坐落在山東省的濱海城市青島,這是中國第一個靠自己力量設計與施工的大型膜結構體育場,外包尺寸為266m×180m,可容納6萬觀眾。懸挑40m的屋蓋是一個包括膜、索和鋼支承結構的典型張拉體系,整個屋蓋由70個錐形索膜單元組成,總面積為30000m2.環顧整個中國大地,新的體育中心正在一個接一個的規劃, 膜結構成為覆蓋主體育場的優選,估計已有十多個體育場采用。在大城市中有上海(虹口區足球場)、武漢、鄭州和廣州,在中小城市有煙臺、威海和蕪湖。另一個適宜采用 膜結構的對象是室內體育館,在中國還剛開始。在華北的秦皇島體育館是第一個采用雙層膜的工程,其平面呈橢圓形,長短軸各為112m與98m.最近的一個實例是成都的水上樂園。這個有20000m2的大型建筑用來作為死海漂浮運動。一系列拱形鋼桁架跨越115m,上覆以PVC聚酯織物。
膜結構曾被用于覆蓋一些室內或室外的演出設施。大部分是由鋼框架支承的張拉膜結構。建成的實例有:長沙世界之窗劇場(3500m2)、深圳歡樂谷中心表演場(5800m2)、廣州海洋世界海豚館(2840m2)和天津泰豐風雨劇場(1000m2)等。世界之窗劇場建成于1998年,是早期采用PVC覆面膜材的工程之一。
由于圖內和國際上交流的擴展,需要許多新型的會議與展覽建筑。1999年在深圳召開了中國高新技術成果交易會,有兩個面積為2400m2的館采用了膜屋蓋,顯示了其輕質與透光的突出優點。在海南省的小鎮博鰲,由于有全世界重要人物參加的一系列高層會議在此舉行而聞名。主會場即采用了膜結構,施工工期十分緊迫,4000m2的膜屋蓋在40天內完工。在廣西壯族自治區首府南寧建造了國際會議展覽中心。一個以膜材覆蓋的鋼穹頂位于多功能大廳上空成為整個建筑物的焦點。鋼結構內外兩邊采用雙層的PTFE玻璃纖維織物覆蓋。膜結構還可用來覆蓋各種不同的小型建筑,如加油站、收費站、服務中心、大門入口以及遮陽設施等。雖然每個工程的面積只有幾百平方米,但工程的數量很多,把全國的工程加起來,膜的數量就很可觀了。
中國膜材十年仍未突破
膜結構只有在材料問題得到解決之后才得以大量推廣應用,因此關鍵問題是要提供滿足功能要求、耐久性好與經濟的膜材。用于膜結構有二種主要建筑織物,即涂敷聚四氟乙烯(PTFE)的玻璃纖維織物和涂敷聚乙烯(PVC)的聚酯織物。PTFE玻璃纖維織物具有強度高、半透明、耐火不燃以及自潔性好等優點。雖然材料的保證年限是25年,但按照實際使用的經驗,其期望的使用壽命將會更長。玻璃纖維膜材的唯一缺點是價格較貴。PVC聚酯織物與玻璃纖維織物相比,其強度等性能稍差,使用年限也較短,但價格卻很便宜,大約在1/5左右。加了改進其性能可在涂層外再加一層面層,聚偏氟乙烯(PVF)或聚偏二氟乙烯(PVDF)。這種面層能保護織物抵抗紫外線的侵蝕,并改進其自潔性。
目前國內有好多廠家都能生產有PVC涂層聚酯織物,但其性能尚未能完全達到建筑織物的要求,作為建筑用的永久性材料尚需進一步提高。據悉最近有些公司正在試制有PVDF面層的聚酯織物和PTFE玻璃纖維織物,外觀與性能都大有改進。
近一段時間來,國外媒體表現出了對中國建筑設計前所未有的關注。2005年12月23日的美國《商業周刊》評選出了中國十大新建筑奇跡,包括北京奧體主會場、國家游泳中心、北京首都國際機場、上海世界金融中心、國家大劇院、中央電視臺、上海崇明東灘生態城、當代MOMA、長城腳下的公社、東海大(上海)。其中地處北京的建筑就有七家之多。"中國正逐步成為當今最具有創意性建筑和工程設計的舞臺。"中國建筑事業的發展,正在為今日最頂尖建筑及工藝技術創造一個舞臺。報道首先分析了中國新建筑崛起的經濟原因和外部環境。文章說,當全球矚目北京2008年奧運會時,不單是世界上最快以及最具實力的運動員們正在為爭取最高榮譽而加緊努力,新一代的創新建筑也正在北京的土地上拔地而起。由于蒸蒸日上的經濟的強大支持,世界上最大的航空港、有節能環保的建筑及世界上最高的室外觀光臺等將很快一一落戶中國。文章列舉評選結果說,2008年以前完工的國家游泳中心(水立方)、國家體育場(鳥巢)、國家大劇院等中國公眾十分熟悉的知名場館更理所當然地進入了"十大"之列。從對它們的評價與介紹中可以看到評選者對追求環保、自然的推崇。比如被稱為"水立方"的國家游泳中心,是節能環保型的建筑。游泳池內的水將由太陽能加熱,泳池的雙重過濾裝置可實現水的再利用,就連多余的雨水也將被收集和儲存在地下的水池中。復雜的工程系統和彎曲的鋼結構使得外部結構像一個泡沫,這種獨特的結構設計使得"水立方"幾乎經得起任何地震的襲擊。文章介紹"鳥巢"時寫道,為讓北京奧運會主會場這個有著91000個座位的、可能是至今最大的環保型體育場獲得自然通風,建筑師從自然中獲得了靈感,獨創了一個未完全密封,但同樣能為觀眾和運動員遮風擋雨的外殼。體育場的外觀猶如一個由枝條編織而成的鳥巢;而其內部,從休息室到飯店,每一個分開的空間都是一個獨立的單元,從而使自然空氣的流通成為可能。文章指出,作為全國最具流行色彩的城市,北京吸引了很多知名建筑大師成就事業。入選的北京"長城腳下的公社",是由12名亞洲杰出建筑師設計建造的當代建筑藝術作品。北京"當代MOMA"的設計表明了環保創新技術在住宅中應用和它所代表的建筑發展新趨勢,堪稱大型可持續發展住宅建筑的典范。它采用世界上最大的地源熱泵系統,將用來幫助這個由第20層的咖啡館、干洗店等系列服務設施連接起來的8幢建筑組成的小區,采用最為節能的方式保持恒濕恒溫,這是這座建筑的一大亮點。住宅單元還有一大亮點,就是可再利用廢水,將廚房和洗臉盆的廢水過濾,衛生間循環利用。
(一)、不定的形狀與形狀的確定
膜結構的突出特點之一就是它形狀的多樣性,曲面存在著無限的可能性。對于氣承式空氣膜結構來說,充氣之后的曲面主要是圓球面或圓柱面,可能沒有太多的選擇余地。而對于以索或骨架支承的膜結構,其曲面就可以隨著建筑師的想象力而任意變化。
膜結構形狀的千變萬化突出地表現在歷年各國舉行的博覽會上。在這些博覽會上,大大小小的展覽館,無不以新穎奇特的造型來吸引觀眾,而膜結構就能用來達到這樣的目的。例如1985年在日本茨城縣舉行的國際科學技術博覽會,入口就是以五顏六色的膜材構成的拱形大門。在眾多的展覽館中膜結構尤為奪目,象火鳥館以鋼梁與索組成的骨架支承扁平的凹凸屋面。美國館以高聳的桅桿懸掛銀白色的屋面。電力館以中央塔架懸吊25個尖頂帳篷,夜晚通過燈光的反射宛如燃燒的火焰。其他象在候車亭、電話亭、走廊、廁所上也都出現了用膜材構成形式各異的建筑小品,蔚為大觀。
就形狀而言,對建筑師說來是至關重要的。采用一般結構的建筑物,其形狀往往是先由建筑師確定。膜結構則不同,首先它的變形比一般結構要大一些,其次它的形狀是在施工過程中逐步形成的,有一個形狀確定的問題,需要結構工程師的參與。要確定在初始荷載下結構的初始形狀,即結構體系在膜自重(有時還有索)與預應力作用下的平衡位置。在初步設計階段,先按建筑要求設定大致的幾何外形,然后對膜面施加預應力使之承受張力,其形狀也相應改變,經過不斷調整預應力,最后就可得到理想的幾何外形和應力分布狀態。
懸索結構中的索網與膜結構一樣也有形狀確定問題,象1968年蒙特利爾博覽會的德國館和1972年慕尼黑奧運會主體育都有特殊的形狀需要確定,當時只有借助于縮尺模型來解決。早期的膜結構也往往采用這個方法,材料從最簡單的肥皂膜,一直到織物或鋼絲。由于在小比例模型上測量的誤差尚不足以保證曲面幾何形的正確性,故對足尺的建筑外形只能起參考作用。但這還不失為一種有效的手段,能為設計者提供一個直觀的形象。隨著計算機技術的不斷進步,膜結構的形狀就更多地依靠計算機來確定。在膜結構設計理論中還出現了專門的研究課題--找形(formfinding)。為了尋求合理的幾何外形,這個過程通過計算機的幾次迭代,就可確定膜結構的初始形狀。
膜結構設計打破了傳統的先建筑、后結構做法,要求建筑設計與結構設計緊密結合。在設計過程中,建筑師和結構工程師要坐在一起確定建筑物的形狀,并進行必要的計算分析。這時,所設計建筑物的平面形狀、立面要求、支點設置、材料類型和預應力大小都將成為互相制約的因素,一個完美的設計也就是上述矛盾統一的結果。
(二)、從帳篷到永久性建筑
過去人們習慣地把膜結構看作是個帳篷,而帳篷只能算是一個臨時性建筑--不夠牢固、不能防火、又不能保暖或隔熱。如今對采用膜結構的帳篷卻要刮目相看了,其中的關鍵問題就是材料。
當初大阪博覽會上的美國館,由于是臨時性的展覽建筑,采用的膜材是涂覆聚氯乙烯(PVC)的玻璃纖維織物,算不上先進,但在強度上也經受了兩次速度高達每小時140km以上臺風的考驗。通過這個工程使設計者認識到,需要一種強度更高、耐久性更好、不燃、透光和能自潔的建筑織物,70年代美國制造商開發的玻璃纖維織物即滿足了如上的要求。主要的改進是涂覆的面層采用了聚四氟乙烯(PTFE,商品名Teflon一特氟隆)。這種材料于1973年首次應用于美國加利福尼亞拉維思學院一個學生活動中心的屋頂上。經過20多年的考驗,材料還保持著70-80%的強度,仍然透光并且沒有褪色,拉維恩學院膜結構的使用經驗表明,涂覆PTEE面層的玻璃纖維織物,不但有足夠的強度承受張力,在使用功能上也具有很好的耐久性,從樂觀的估計來說,這種材料的使用年限將遠不止當初所估計的25年。
與此同時,一種價格比較低、涂覆PVC的聚酯織物在性能上也有很大的改進。制造商在原來的涂層外面再加一面層,比較成熟的有聚氟乙烯(PVF,商品名Tediar)和聚偏氟乙烯(PVDF),這種面層不但能保護織物抵抗紫外線,而且大大地改進了自潔性,這樣就把聚酯織物的使用年限提高到15年;得以在永久性建筑中使用。
1975年在美國密執安州龐提亞克興建了平面尺寸243.9X183m的銀色穹頂,這是第一次將氣承式膜結構應用于永久性的大型體育館。其后在北美地區,類似的膜結構就建了9座,其中象美國的明尼阿波利斯和加拿大的溫哥華均位于北方地區。雖然象這樣的充氣結構也發生過幾次不愉快的坍塌事故,但是膜結構終于登堂入室,進入永久性建筑的行列。日本在徘徊了10多年之后,也在1988年修建東京后樂園棒球場時采用了氣承式膜結構。
早期修建的膜結構大多是開敞式或位于氣候溫和的地區,還沒有充份發揮膜材的圍護能力,那么在寒冷和多雪地區,將是對膜結構作為永久性建筑的真正考驗。1983年在加拿大加爾格里建成的林賽公園體育中心就是一個例證。在這座橢圓形的建筑中,游泳館和田徑館各占一半,以一根橫跨122m的格構式鋼拱將兩者分開。在鋼拱與周邊圈梁之間的鋼索網支承著折線形的膜材屋面,采用涂覆PTEE的玻璃纖維織物,索網下設有纖維棉的保暖層,屋頂不但能防寒,還能透過4%的光線,這就足以在白天不用人工采光。此外在保暖層下面還有一層很薄的蒸氣絕緣層,能起吸音作用。
位于號稱日本雪國的秋田縣,最深積雪可達150cm.1990年建造了天空穹頂體育館,其外形從球體截取,長邊為130m、短邊為100m.這座體育館的設計構思來源于當地著名的雪窯洞,但置身其中又有在戶外的感覺。屋蓋承重是正交的格構式空間拱系,沿長方向采用空腹拱并設有鋼索,沿短方向采用鋼管拱。長向鋼索被用來對膜面施加張力,同時與骨架在屋面形成V形槽溝,以便于雪滑落。緊貼屋面的鋼管拱被用作輸送暖風的通道,既起到融雪的作用,也解決了膜面的結露問題。膜材為單層玻璃纖維織物,透光率可達10%,在場中仰望屋頂,給人以通透明亮的感覺。在寒冷地區建造大跨度膜結構,秋田天空穹頂是一個成功的范例。
(三)、膜的交承--空氣、索或骨架
膜材屋面以什么支承,始終是膜結構設計中有待于探索的問題。也許當初是從氣球或橡皮艇受到的啟發,人們考慮以空氣為支承,就是向氣密性好的膜材所覆蓋的空間注入空氣,利用內外空氣的壓力差使膜材受拉,結構就具有一定的剛度來承重。早在第二次世界大戰后期,美國就曾用氣承式膜結構建造了一些小直徑的雷達罩棚用于軍事目的,而大阪博覽會的美國館則是大跨度氣承式膜結構的里程碑。在大阪博覽會上還出現了一種氣脹式膜結構,即將膜材本身做成一個封閉體,注入空氣的壓力要比氣承式大得多。象富士館就是以輪胎狀的半圓形筒體組成50m直徑的圓頂,在節日廣場大跨度網架上,鋪設的屋面板是上下兩層,其為聚酯膜材,10.8m見方的充氣板。
氣承式膜結構用作大跨度體育館屋頂,建成之后由于在惡劣天氣時維護不當,曾出現過好幾次事故,輕者屋面下癟,重者膜材被撕裂,砸壞了下面的設施。這些事故雖然只造成一些財產的損失,并沒有人員傷亡,但在公共建筑中屋面出問題,還是引起了公眾的關注,甚至對氣承式膜結構是否安全也產生了疑問。
1986年以后,在美國建造的大型體育館就沒有采用過空氣膜結構,對于有些已建成的體育館,其膜材將達到保證的使用年限,需改建時也不再考慮采用氣承式膜結構。不過由于其造價低廉、安裝方便,中小跨度的健身房、網球館、倉庫等,氣承式膜結構還是受到歡迎。
對膜結構能否用在永久性建筑上一向比較慎重的日本,卻在東京后樂園采用了氣承式膜結構。它在構造上與以前在美國建造的空氣膜結構沒有什么差別,其主要特點是在屋頂上采用了先進的自動控制系統,同時屋面膜材為雙層,其間有循環的熱空氣,以融化雪。這個號稱為機械、電子與土建相結合的智能建筑,確保了膜結構的安全與體育館的正常運行。然而,曾幾何時,昂貴的運轉與維持費用又使后樂園背上了沉重的經濟包袱。近年來日本大量建造穹頂,而沒有繼續采用氣承式膜結構。1997年日本熊本公園體育場主屋蓋采用了加勁索的雙層氣脹式膜結構,使空氣再一次作為膜的支承。熊本穹頂融合了車輪型雙層圓形懸索和氣脹式膜結構的特點,成為一種新型的雜交結構。直徑107m的圓形屋頂宛如一朵浮云覆蓋著體育館,雙層膜之間的充氣量遠小于要對整個室內空間充氣的氣承式膜結構。一旦漏氣,屋蓋還可由鋼索支承,不至于塌落。美國工程師蓋格(D.Geiger)是氣承式膜結構的先驅者,他設計了大阪博覽會的美國館,其后又將改進的玻璃纖維膜材用于銀色穹頂。由于氣承式膜結構出現過的多次事故,使他察覺到空氣支承的潛在缺陷,轉而尋求其他的支承方式。在此之前,美國的發明家和工程師富勒(B.Fuller)提出了張拉整體(Tensegrity)的概念,即以連續的受拉鋼索為主,以不連續的壓桿為輔,組成一種結構體系,然而他的概念始終沒有在工程中實現。蓋格創造性地把這個概念運用到以索、膜與壓桿組成的索穹頂(cable dome)設計上,荷載從中心受拉環通過一系列輻射狀脊索,受拉環索與斜拉索傳到周圍的受壓圈梁上。索穹頂首先用在1986年韓國漢城奧運會的體操館與擊劍館上,其直徑分別為120m與93m.其后又得到了不斷的發展,跨度最大的是美國佛羅里達州的太陽海岸穹頂,直徑達210m.此外,美國李維(M.levy)也繼承了張拉整體的構想,并采用了富勒的三角形網格,設計了雙曲拋物面的張拉整體穹頂,其代表作就是1996年在美國亞特蘭大舉行的奧運會主館--佐治亞穹頂,這個240mX192m的橢圓形索膜結構成為世界上最大的室內體育館。主要依靠索來支承膜的索穹頂是膜結構體系的一大進展。膜材也完全可以支承在平面或空間結構上,如拱、網殼等,其材料可選用鋼、木或鋁合金。象日本秋田天空穹頂采用了鋼結構的空間拱系,而位于同一地區的大館穹頂,178mX157m卵形平面上以雙向膠合木拱支承著雙層膜面。膜結構還可以采用桅桿作為支承,賦予建筑立面以新的變化,第一個采用涂覆PTFE玻璃纖維織物的拉維思學生活動中心屋頂由4個圓錐形的帳蓬組成,每一個圓錐體有一傾斜15度的桅桿,支承膜材的鋼索就由桅桿頂部輻射狀地伸向周圍的圈梁。英國千年穹頂的12根桅桿穿出了屋面,膜面支承在72根輻射狀的鋼索上,這些鋼索則通過斜拉吊索與系索由桅桿所支撐,吊索與系索對桅桿起穩定作用。在這些建筑中,傳統的承重結構與先進的膜面形成了完美的結合。從多年來國內外的實踐經驗來看,由于新材料、新形式的不斷出現,膜結構具有強大的生命力,必將是21世紀建筑結構發展的主流。它的應用范圍不僅限于體育或展覽建筑,已向房屋建筑的各個方面擴展,因而具有廣闊的發展前景。在中國,膜結構的開發與研究還剛剛起步,因此當務之急是學習并引進國外先進技術,開發生產中國自己的膜材,解決設計中存在的問題。膜結構在中國也將會得到越來越多的應用。